Fullerene-water nanofluid confined in graphene nanochannel
نویسندگان
چکیده
منابع مشابه
Proton transfer in liquid water confined inside graphene slabs.
The microscopic structure and dynamics of an excess proton in water constrained in narrow graphene slabs between 0.7 and 3.1 nm wide has been studied by means of a series of molecular dynamics simulations. Interaction of water and carbon with the proton species was modeled using a multistate empirical valence bond Hamiltonian model. The analysis of the effects of confinement on proton solvation...
متن کاملSpontaneous unknotting of a polymer confined in a nanochannel.
We study the dynamics of a knot in a semiflexible polymer confined to a narrow channel of width comparable to the polymers' persistence length. Using a combination of Brownian dynamics simulations and a coarse-grained stochastic model, we characterize the coupled dynamics of knot size variation and knot diffusion along the polymer, which ultimately leads to spontaneous unknotting. We find that ...
متن کاملElectrostatically confined quantum rings in bilayer graphene.
We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In...
متن کاملDirect transformation of graphene to fullerene.
Although fullerenes can be efficiently generated from graphite in high yield, the route to the formation of these symmetrical and aesthetically pleasing carbon cages from a flat graphene sheet remains a mystery. The most widely accepted mechanisms postulate that the graphene structure dissociates to very small clusters of carbon atoms such as C(2), which subsequently coalesce to form fullerene ...
متن کاملTransport of fullerene molecules along graphene nanoribbons
We study the motion of C₆₀ fullerene molecules and short-length carbon nanotubes on graphene nanoribbons. We reveal that the character of the motion of C₆₀ depends on temperature: for T < 150 K the main type of motion is sliding along the surface, but for higher temperatures the sliding is replaced by rocking and rolling. Modeling of the buckyball with an included metal ion demonstrates that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: AIP Advances
سال: 2017
ISSN: 2158-3226
DOI: 10.1063/1.5004438